

Digital I/O TTL and CMOS – TTL offers high switching speed and relative immunity to noisy systems. CMOS sensors provide image sensing technology by converting light waves into signals that are small bursts of current. These waves can be light or other electromagnetic radiation. NAI's TTL/CMOS Modules are offered in two versions: our Standard Functionality (SF) an Enhanced Functionality (EF) module. The transistor-transistor logic (TTL) employs transmitters with multiple emitters in gates having more than one input.

Module	Description
TL1	24 TTL Channels, Programmable I/O
TL2	24 TTL Channels, Enhanced, Programmable I/O

Features

- 24 channels available as inputs or outputs
- Programmable debounce circuitry with selectable time delay eliminates false signals resulting from relay contact bounce
- Built-in test runs in background constantly monitoring system health for each channel

Automatic Background Built-In Test (BIT)/Diagnostic Capability

These modules contain automatic background BIT testing that verifies channel processing (data read or write logic), tests for overcurrent conditions and provides status for threshold signal transitioning. Any failure triggers an Interrupt (if enabled) with the results available in status registers. The testing is totally transparent to the user, requires no external programming and has no effect on the operation of this card. It continually checks that each channel is functional. This capability is accomplished by an additional test comparator that is incorporated into each module. The test comparator checks each channel and is compared against the operational channel. Depending upon the configuration, the Input data read or Output logic written of the operational channel and test comparator must agree or a fault is indicated with the results available in the associated status register. Low-to-High and High-to-Low logic transitions are indicated.

There is no independent overcurrent detection. Instead, the BIT detection circuitry is used to infer an overcurrent condition if the output state setting doesn't match the readback value seen by the input circuitry. For example, a shorted output, causing the read state to be opposite from the expected value would trigger this. If the fault persists beyond the BIT interval stabilization time, the overcurrent protection will kick in and reset the drive output by returning the transceiver to input mode. To reset this condition, a reset command needs to be issued to the Overcurrent Clear register, which will restore drive output and allow the latched status to be reset. This is separate from the reset for the Interrupt Enable Overcurrent register on this module. It is recommended that a reset command is done whenever status is cleared to avoid a non-apparent output reset condition

New Embedded Soft Panel

North Atlantic Industries offers the newest cross platform (Windows and Linux) GUI for our Gen 5 products that allows a user to quickly interact with our broad range of modular, I/O cards and rugged embedded computing products. Embedded Soft Panel 2 (ESP 2) is coherent and easy to use with a clean, fleshed out UI with features such as drag and drop dock able windows, a dark and light theme, and multi-language support. Multiple ways to open a board are offered, including saving board opening settings for future use. Interacting with and collecting information on hardware is simple to do with the register editor for reading and writing specific addresses, and the API logger which logs all API library calls including their return status and parameters. ESP 2 has many new features and provides an organized and effortless interface for NAI's next generation products. Available for CentOS 7.4 and 8.2 and Windows 10 x64

Digital I/O Example - Module TL1 Demo Mode Screen Shots

DEMO -	ID: TL1			
В	asic TTL	Banks		
Chan.	IO Format	Debounce	OutState	Input State
1	Input 🝷	0.000000	Low 🔻	
2	Input Output	0.000000	Low 🔻	
3	Input 🔽	0.000000	Low 🔻	
4	Input 두	0.000000	Low 🔻	
5	Input 두	0.000000	Low 🔻	
6	Input 두	0.000000	Low 🔻	
7	Input 두	0.000000	Low 🔻	
8	Input 두	0.000000	Low 🔻	
9	Input 두	0.000000	Low 🔻	
10	Input 두	0.000000	Low 🔻	
11	Input 🝷	0.000000	Low 🔻	
12	Input 🔽	0.000000	Low 🔻	
13	Input 🝷	0.000000	Low 🔻	
14	Input 🔽	0.000000	Low 💌	

Basic T	n	Banks			
Bank Num	Bank	Src	Bank Voltage (V))	
1	Externa				
All	Externa Interna	••••••			

Sta	atus				
Ch	BIT	OC	Lo ⇒ Hi	Hi ⇒ Lo	
1	DL	DL	DL	DL	
2	DL	DL	DL	DL	
3	DL	DL	DL	DL	
4	DL	DL	DL	DL	
5	DL	DL	DL	DL	
6	DL	DL	DL	DL	
7	DL	DL	DL	DL	
8	DL	DL	DL	DL	
9	DL	DL	DL	DL	
10	DL	DL	DL	DL	
11	DL	DL	DL	DL	
12	DL	DL	DL	DL	
13	DL	DL	DL	DL	
14	DL	DL	DL	DL	•

🕼 Register Editor

(Sur Register Editor		– 🗆 X
Address Values	Register Width 7 Refresh	-Single Read / Write
Offset Address 0x0000000	8 Bit Auto Refresh 500 Read Interval	(ms) Offset Address 0x00000000 Read Reg
Base Address Selection MotherBoard	• 16 Bit	
Count (Dec): 256	O 32 Bit Refresh Save To File	Value 0x00000000 Write Reg
Actual Addr 00 04 08 0C	00 04 08 0C	

Modu	le Settings	Tempera	ature Panel	Inter	rupts							
Cel	sius (Curren	t Core	Current E	loard	Max Core	м	in Core	Max	(Board	Min Boa	ard
Moth	erboard							_				
Modu	le											
Module Set	tings Temperat	ture Panel	Interrupts									
Channel										10		12
Status Type	BIT Latched	BIT Latched 💌	BIT Latched 💌	BIT Latched 🔽	BIT Latched 🔻	BIT Latched 💌	BIT Latched 🔻	BIT Latched 💌	BIT Latched 💌	BIT Latched 🔽	BIT Latched 💌	BIT Latched 🔽 BI
Enable	BIT Realtime OC Latched											
Edge/Level	OC Realtime LoHi Latched	Edge 🔽	Edge 🔽	Edge 💌	Edge 🔻	Edge 💌	Edge 🔽					
Status Type	LoHi Realtime HiLo Latched HiLo Realtime	Steering	VME	Vector		0						

For more information contact ティー・ピー・ティー株式会社 (TPT K.K.) <u>www.tptech.co.jp</u> Telephone:81-3-5832-7350 TPT KK: <u>Contact</u> Rev. A